About 410,000 results
Open links in new tab
  1. 如何通俗易懂地解释HJB方程? - 知乎

    当然是借助图像了。 HJB方程的内涵和观点远大于形式,包含的信息量很多,特别是由Bellman最优性原理推出HJB方程从根本上划分了经典变分和最优控制,这是个相当有趣的思维过程,但遗憾的是很难 …

  2. control theory - Numerical solution of HJB (Hamilton-Jacobi-Bellman ...

    Jan 27, 2021 · I am struggling to understand what the use of HJB equations in order to solve optimal control problems is in practice. I found the following approach in the book "Stochastic …

  3. Optimality — Hamilton-Jacobi-Bellman (HJB) versus Riccati

    Jun 30, 2020 · 12 Most of the literature on optimal control discuss Hamilton-Jacobi-Bellman (HJB) equations for optimality. In dynamics however, Riccati equations are used instead. Jacobi Bellman …

  4. HJB方程比极大值原理分别有什么好处?二者都适用于什么情况? - 知乎

    4.上面讲了一堆HJB方程的不好,那么HJB方程有好处嘛? 有的,HJB方程衍生的动态规划不仅可以求一个状态的最优解,还可以方便地求所有状态的最优解。 目前读书思考有限,先写这么多吧。 顺便给 …

  5. 使用神经网络来求解HJB方程都有哪一些方法,能够做到什么样的精确 …

    神经网络(NN)解hjb并没有太多工作。 如果说带diffusion项的viscous hjb,有一些基于sde设计的方法,用nn approximate sde,如weinan E之前pnas的paper,还有pham的一些paper,金融那边可能有 …

  6. mathematical economics - Solving the Hamilton-Jacobi-Bellman …

    I am not sure what is asked here: if per Bertsekas solving HJB is sufficient, then you do not have to "worry about additional optimality conditions". The "sufficient only" against "necessary and sufficient" …

  7. 如何理解汉密尔顿-雅克比-贝尔曼方程Hamilton–Jacobi–Bellman …

    如何理解汉密尔顿-雅克比-贝尔曼方程,即Hamilton–Jacobi–Bellman equation。除了英文的维基百科有相关…

  8. stochastic processes - Understanding HJB equation for the infinite ...

    Dec 23, 2022 · Understanding HJB equation for the infinite horizon consumption control problem Ask Question Asked 3 years ago Modified 2 years, 11 months ago

  9. Hamilton Jacobi Bellman and uniqueness - Mathematics Stack Exchange

    Mar 27, 2024 · Until now I am fine, however often when the guess was right, they say that is the value function because it solved the HJB equation, however I am not aware of the uniqueness of the …

  10. 求问什么是哈密顿雅可比贝尔曼偏微分方程? - 知乎

    哈密顿-雅可比-贝尔曼方程(Hamilton-Jacobi-Bellman equation,简称HJB方程)是一个偏微分方程,是最优控制的核心。 HJB方程的一般形式为: