About 5,960,000 results
Open links in new tab
  1. What is Explainable AI (XAI)? | IBM

    Nov 28, 2019 · AI explainability also helps an organization adopt a responsible approach to AI development. As AI becomes more advanced, humans are challenged to comprehend and retrace …

  2. Explainability - IBM

    Dec 6, 2022 · Explainability example Per GDPR (General Data Protection Regulation), a guest must explicitly opt in to use the hotel room assistant. Additionally, they will be provided with a transparent …

  3. Cos'è l'AI spiegabile (XAI)? | IBM

    La cosiddetta AI spiegabile (o eXplainable AI , XAI) consente agli utenti umani di comprendere e ritenere affidabili i risultati e gli output generati mediante algoritmi di machine learning.

  4. 説明可能なAI(XAI)とは - IBM

    説明可能なAI(XAI)とは、機械学習アルゴリズムによって生成された結果や判断の根拠を、人間が理解し、信頼できるようにするための一連のプロセスや方法のことです。

  5. 설명 가능한 AI(XAI)란 무엇인가요? | IBM

    설명 가능한 AI(XAI)를 통해 사용자는 머신 러닝 알고리즘이 생성한 결과와 출력을 이해하고, 신뢰할 수 있습니다.

  6. What Is AI Interpretability? | IBM

    AI interpretability is the ability to understand and explain the decision-making processes that power artificial intelligence models.

  7. Was ist erklärbare KI (XAI)? | IBM

    Anhand von erklärbarer künstlicher Intelligenz (Explainable Artificial Intelligence, XAI) können Nutzer die von Algorithmen des maschinellen Lernens erzeugten Ergebnisse und Ausgaben verstehen und …

  8. How IBM makes AI based on trust, fairness and explainability

    For IBM, trust is a foundational pillar of AI. Check out our full Innovation panel to learn more about trust, fairness and governance with AI.

  9. Foundations of trustworthy AI: governed data and AI, AI ethics ... - IBM

    IBM’s governed data and AI technology is structured on the application of our fundamental principles for ethical AI: transparency, explainability, fairness, robustness, and privacy. These five focus areas are …

  10. What Is AI Transparency? | IBM

    Oct 30, 2023 · AI explainability, or explainable AI (XAI), is a set of processes and methods that allow human users to comprehend and trust the results and output created by machine learning models. …